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Building Automation Systems (BAS) in cooperation with smart grids show great
potential for enhancing the energy efficiency of buildings. Smart buildings should
consume the most of their energy when there is enough of renewable energy avail-
able and postpone or reduce consumption otherwise. The intelligent bidirectional
interaction from devices on the demand side the whole way up to power distribu-
tors is hindered by a great heterogeneity of BAS, which is caused by the various
devices, protocols and technologies produced by different vendors [1]. The open
Building Information eXchange (oBIX) [2] is an open standard which offers a tech-
nology independent access to BAS and eases integration on a syntactical level by
abstracting from different control protocols and network technologies. Still, the data
exchanged does not necessarily bear the same semantics and thus requires further
interpretation. In order to reach the goal of a comprehensive integration of different
BAS technologies, this semantic incompatibility has to be resolved by enabling the
distribution of semantically consistent data by various diversified devices. Overcom-
ing this limitation would make it possible to share data across a distributed BAS that
is compatible in terms of semantic aspects and to implement a common knowledge
base [3] which in turn will enable the realization of more comprehensive automation
scenarios that support the objective of improving the energy efficiency of buildings.

The aim of this work is to provide a semantic interoperability layer on top of an
oBIX integration layer having KNX as a BAS representative. Starting from a set of
use cases describing typical home and building automation scenarios, an ontology
shall be designed which will eventually allow to exchange semantically consistent
data across various BAS. The intention is to use the Web Ontology Language (OWL)
[4] for this task. An extension or integration of existing ontologies from the building
automation sector should be considered. In a second step, the oBIX standard shall
be enriched with meta-data annotations, whereby the semantic of these annota-
tions should be taken from the created ontology in order to allow consistent data
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across various devices. Further, a transformation from oBIX to OWL needs to be
performed. Not only static data like, e.g., the location of a sensor should be consid-
ered for the transformation but also run time data like current sensor values. For this
task, an XSL transformation (XSLT) [5] is used. In order to evaluate the intended
concepts, a prototype is currently developed by the Automation Systems Group of
TU Vienna. In addition, an oBIX server interface is developed by NETxAutoma-
tion as an extension for their existing NETx BMS Server which integrates KNX and
other building automation technologies. To this aim, oBIX contracts following the
new KNX Web Service specification [6] need do be defined and implemented. The
semantic interoperability prototype, which uses the NETx BMS Server as a data
source, will be equipped with oBIX client functionality. It will maintain a common
knowledge base as a Resource Description Framework (RDF) [7] triple store. The
BAS ontology provides the necessary concepts therefore. In order to synchronise
data between the triple store and the NETx BMS Server, a semantic web crawler
will be developed which recurrently searches for devices and updates the RDF Triple
Store with fresh data transformed from the oBIX interfaces of the underlying layer.
The prototype shall also provide means to query and update the data from the RDF
triple store via a SPARQL endpoint [8].

1 Introduction

The integration of different BAS technologies allows increasing both the energy efficiency of
buildings and inhabitant comfort. Web Services (WS) provide a technology independent way of
accessing and representing data and thus represent a promising approach to ease integration
of heterogeneous systems and technologies [9] into an Internet of Things (IoT) [10]. The term
IoT basically refers to a network of connected things such as sensors, consumer electronics,
smart phones. The fundamental objective of interconnecting things is to empower them to
create a preciser model of their context thus allowing them to provide services which react
intelligently to dynamic changes within their environment [11].

The smart grid is considered as one of the most important applications of the IoT [12]. The
core element of the smart grid is a bidirectional communication between energy producers and
consumers. It is expected that smart grids will change the paradigm of energy distribution from
a centrally controlled system to a system where the control is distributed to various objects.
This should allow a more precise monitoring and controlling of the system which should result
in less energy loss and higher efficiency [13].

Still, the interconnection of things based on WSs can only be seen as an intermediate step
towards the fulfillment of the IoT vision. On this level, heterogeneous devices are enabled to
interact via a formally specified application protocol, reasoning about the meaning of the ex-
changed messages requires a human interaction tough. In order to empower the collaboration
of autonomous devices and agents, a common understanding between these things has to be
established. This requires the utilization of Semantic Web technologies.

Semantic interoperability allows different agents connected to the IoT to interpret the ex-
changed data unambiguously and further empowers automated communication between things.
Unambiguous data descriptions that are interpretable by machines and software agents are a
major driver for automated information exchange within the IoT. SPARQL queries and semantic
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reasoning could be used to solve problems related to knowledge extraction, data abstraction
and discovery of resources [11]. Thus, by achieving semantic interoperability, autonomous
distributed devices and agents would be enabled to collectively answer questions respectively
perform actions like:

• Is every switching actuator of a distinct floor in "off" state?
• How many rooms of a building are occupied?
• Which lamps in a building have exceeded a distinct operating time?
• Turn on hallway lights in a distinct building part!
• Turn on all electrical boilers of a site having a distinct offset between current temperature

and setpoint!
This work is structured as follows. In Section 2, the oBIX standard will be introduced. Section
3 provides a short introduction on the KNX Web Services standard. Next, in Section 4, the Se-
mantic Web and its technologies will be presented. Section 5 describes the proposed Semantic
Interoperability Layer for oBIX (SILo), followed by a short description of the proof of concept im-
plementation. Finally, the results of this work are evaluated and some ideas for further work are
presented.

2 Open Building Information Exchange (oBIX)

The oBIX specification is released and maintained by the Organization for the Advancement of
Structured Information Standards (OASIS). The purpose of oBIX [2] is to empower communi-
cation between heterogeneous devices by abstracting from their actual hardware and low-level
protocols they use. It provides a common and standardized interface that models a device to a
set of datapoints allowing to access these via Web Services. A similar WS based approach is
also possible via OPC UA [14] and BACnet/WS [15].

Every accessible oBIX object is identified by its URI [16] and the according information is
exchanged in XML or JSON format over HTTP, which makes the information available to every
Web browser. Essentially, oBIX provides the means to enable and improve the M2M commu-
nication. oBIX complies very well to the REST paradigm. A RESTful service is characterized
through a set of principles such as resource-orientation, identification of resources, a uniform
interface and stateless requests which are all essential to oBIX as well.

2.1 Object Model

oBIX provides a flexible and extendable object model. The common base primitive of this model
is the object abstraction obix:obj. An exemplary obix:obj implementation is shown in Listing 1.

Every further object type like real, int, str is an extension of the base object. Any object type
can contain further objects, i.e., the concept of composition (has-a relationship) is supported.
The extendability of the model is based on the concept of contracts, which act as templates
for inheritance (is-a relationship). Contracts additionally define properties for each object type
such as default values and attributes attached to it. Properties supported by all object types
are name, href, is, null, val, ts.

Further properties, e.g., min, max, displayName, unit, range that provide meta-data about
objects are named facets. The unit facet supports most relevant SI-units and the range, min
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Listing 1: obix:obj Example

<obj h re f = " / devices / l i g h t _ s w i t c h / " i s = " o b i x : P o i n t ">
<bool name=" value " h re f = " value " va l= " f a l s e " w r i t a b l e =" t rue " / >

< / ob j>

oBIX Request HTTP Method

read GET
write PUT
invoke POST
delete DELETE

Table 1: oBIX-HTTP mapping [17]

and max facets limit the range of values which an object may store. The oBIX standard contains
a set of core value objects, each of them storing a different value type.

2.2 Contracts

In order to group different object instances sharing common properties, oBIX introduces the
concept of contracts, which are comparable to classes in object oriented languages. Contract
definitions are templates which are expressed as simple oBIX objects and can be referenced
by their URI using the is attribute.

Contracts are proper for modeling inheritance relationships in oBIX. Even multiple inheritance
is supported. By defining a type, it is possible to assign default values to its instances and agree
on the semantics of an object across different vendor systems, e.g., an obix:Alarm instance has
the same object structure on different vendor systems and implicitly provides information about
an alarming condition. The object structure is explicitly defined by a contract, whereas the
reasoning about its semantics usually demands human interaction.

The concept of contracts is simple and flexible and allows to introduce new abstractions
without inserting new syntax elements to the standard.

2.3 Networking

The communication in oBIX conforms to a client/server paradigm, where a client sends service
requests to a server that is handling these requests. The supported service requests are Read,
Write, Invoke and Delete. There exist different protocol bindings for these atomic operations as
REST [17], SOAP [18] and Websockets[19]. The mapping of oBIX service requests to HTTP
request methods is shown in Table 1 according to [17]. Different encodings such as XML, JSON
and EXI are provided for the oBIX standard.

In order to allow a client to keep track of real time information, e.g. a temperature sensor
value, the oBIX watch mechanism is presented. The client creates an obix:Watch object where
it registers all the datapoints it is interested in and gets informed if any of these get updated.
Using bindings where its not possible to push events from server to client, e.g. HTTP, the client
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has to continuously poll the server for updates, whereas using the Websocket binding allows
the server to directly push events to the client in case of changes on registered datapoints [2].

3 KNX Web Services

The KNX specification is about to be extended with a KNX Web Service specification [6] which
defines a standardized interface that allows to integrate KNX networks with other IT systems
like e.g. the IoT. The interconnection between KNX devices and other IT systems is enabled by
the introduction of a KNX Gateway as shown in Figure 1. The KNX Web interface of the KNX
Gateway has to support at least one of the following protocols: oBIX, OPC UA, BACnet/WS. It
allows Web clients to read and modify data within the KNX network. The KNX Network access
interface is responsible for the communication to KNX devices. The KNX information model
specifies the structure of the input model that is used to represent the KNX Network within the
KNX Gateway [6].

The KNX information model is based on the KNX Tag vocabulary which specifies a set of
tags and their relations to each other. It is an extension to the already existing ETS object
model and determines the static structure of a KNX network whereas the real-time values are
accessed via the KNX network interface. The presented model allows additional sources of
information as input to the KNX information model which could provide required information
missing in the ETS, e.g., semantic annotations. The KNX information model allows to specify
entities by assigning them tag-value pairs. Tags with a null are named marker tags and define a
is-a relationship whereas the tags ending with ‘Ref ’ are reference tags pointing to other entities
[6].

The specification provides a mapping from the KNX information model to each of the sup-
ported WS technologies such as oBIX.

Figure 1: KNX gateway (adapted from [6])
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Listing 2: KNX Gateway oBIX response

<obj name=" example " h re f = " / i n s t a l l a t i o n / example / " i s = " / knx / I n s t a l l a t i o n "
displayName=" Example ">

< l i s t name=" views " h re f = " views " o f= " o b i x : r e f / knx / View ">
< r e f name=" view_heat ing " h re f = " v iew_heat ing " i s = " / knx / View " / >
< r e f name=" view_alarm " h re f = " view_alarm " i s = " / knx / View " / >

< / l i s t >
< / ob j>

4 Semantic Web

The Semantic Web provides the means to categorize and classify items and to reason about the
relationships between these items. The idea of the Semantic Web as presented by Berners-Lee
in 2001 [20] is to extend the current Web, where most of the available data is designed for hu-
mans, and to improve the structure of the data by giving the provided information a well defined
meaning thus empowering advanced H2M and M2M cooperation opportunities. This provided
meaning in which items are logically structured and connected enables the interoperability of
systems [21].

The W3C has developed a set of technologies and languages to share meaning across
the Semantic Web. The usage of IRIs [22] in order to uniquely identify items is essential to the
Semantic Web. Basically, an IRI is an extension of a URI as it allows a wider range of UNICODE
characters. As IRIs have a global scope, anyone can reference resources associated with them
[21]. This allows to semantically reuse or extend existing concepts and to model relationships
amongst them.

The Resource Description Framework (RDF) [23] is a framework for expressing information
about resources which can be anything like documents, people, abstract concepts. It is de-
signed for scenarios where data should be processed by applications instead of displayed to
humans. RDF allows to make statements about resources. The statements or triples consist of
a subject, predicate and object. Subjects and objects are resources. The predicate or property
models the relationship between the resources and is always directed from a subject to an
object. Triples can be visualized as a directed graph as shown in Figure 2 and they are usually
stored in an RDF store. RDF supports a variety of serialization formats, e.g., Turtle [24], N-3
[25].

RDF makes statements about resources, but it does not allow to make any statements about
the nature of the resources or what they stand for. In order to enable the classification of re-
sources, the RDF Schema [26] language was presented. The RDF Schema introduces the no-
tion of class expressed through the type property, which allows to build hierarchies of classes,
subclasses, properties, subproperties. Restrictions on types are expressed through the do-
main and range properties. RDF Schema is a primitive ontology language [27]. Ontologies are
collections of information which formally define relations among terms [20]. As both RDF and
RDF Schema are rather restricted in their expressiveness, the Web Ontology Language (OWL)
[28] was introduced. It is designed to model knowledge about things, groups of things and re-
lations between them, which can be exploited by computer programs. OWL ontologies consist
of classes, properties, individuals and data values. Classes define a concept while the prop-
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Figure 2: RDF graph visualization

erties model the relations between these concepts. Individuals are the instantiations of these
concepts. The main exchange syntax for OWL is RDF/XML. Additionally to the features already
supported by RDF Schema, it provides the means to express equality/inequality of classes, to
specifically exclude membership to classes (disjoint classes), to apply cardinality restrictions
on properties etc. OWL distinguishes between datatype properties and object properties. The
range of datatype properties is always a datatype such as string, date. Object properties always
point to another resource object. An important aspect of the Semantic Web is the possibility to
search for semantic data. Therefore, W3C has provided the RDF Query Language (SPARQL)
and SPARQL protocol [29]. This allows to query and even update RDF stores. SPARQL pro-
vides an HTTP and SOAP binding which allow to remotely execute SPARQL queries. In many
aspects, SPARQL is comparable to SQL used with relational databases. The basic primitives of
SPARQL queries are the triple patterns which are similar to normal RDF triples, but instead of
the subject, predicate or object they contain a variable placeholder prefixed with the character
‘?’. Combining multiple triple patterns which all have to be satisfied is called a group pattern.
Group patterns are enclosed by curly brackets [30]. As already mentioned, it is also possible
to update RDF stores with a SPARQL update [31]. Updates contain a delete and insert clause
specifying which triples to delete and insert respectively.

5 Semantic Interoperability Layer for oBIX (SILo)

In order to enable semantic interoperability that allows to exchange semantically consistent
data unambiguously between different machines on basis of oBIX, a transformation of oBIX
resources is required. The data presented at the oBIX interface is syntactically formalized
but the meaning of the representation is not implicit. Semantic Web technologies provide the
means to model the meaning implicitly. Therefore, a transformation of the oBIX representation
to an OWL ontology is proposed. This ensures that the static structure of the BAS as provided
at the oBIX interface is semantically well defined. This provides the means to use the resulting
ontology as a common vocabulary for autonomous agents, execute SPARQL queries and gain
new insights through semantic reasoning.

Nevertheless, the actual run time data of BASs like sensor and actuator values require an
additional consideration. The transformed ontology depicts the state of a BAS at the moment
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of the transformation. An energy efficient operation of BASs which satisfies the requirements
related to comfort necessitates an access to run time data. Therefore, a synchronization mech-
anism needs to be implemented which ensures that the data presented by the OWL ontology
are always up-to-date.

The proposed Semantic Interoperability Layer for oBIX (SILo) as shown in Figure 3 is tailored
to the oBIX REST binding [17] syntactically encoded in XML. It provides a SPARQL binding
that allows to query and update the values of the BAS in control. The binding to oBIX is based
on HTTP. It provides the means to read the actual data at the oBIX interface and further to
write values of the BAS by exchanging REST calls between the oBIX server and the SILo
implementation.

oBIX

KNX ZigBee Modbus ...

SILo

SPARQL

HTTP

Figure 3: SILo stack

As both the oBIX source and the resulting ontology can be encoded in XML, the transforma-
tion is based on XSLT. Due to the flexible object model of oBIX, it can be concluded that an
approach as presented in [32] including a mapping of the XML Schema Definition Language
(XSD) [33] schema to an ontology is not useful as it would allow only to model the formal syn-
tactical model of oBIX. This concept does not provide the means to model server specific oBIX
contracts which provide explicit semantic information extremely useful to the transformation. It
further can be argued that every specific oBIX server implementation, as long as there is no
standardized oBIX interface, will require a customized transformation implementation regard-
less of the used ontology.

As the oBIX standard does not provide the means to model semantic information implicitly, it
is up to server developers to communicate such. Therefore, it cannot be generally expected for
such information to be provided by the oBIX server. If required semantic information is missing,
a transformation is only possible when the semantic information is obtained from a different
source. Commonly, providing semantic information requires a human interaction and is consid-
ered as a necessary part of the transformation engineering process which needs to be adapted
to different oBIX server implementations. The higher the gap in the level of abstraction between
the oBIX server implementation and the targeted ontology the more semantic information needs
to be provided in order to allow a transformation, i.e., if the oBIX server delivers information on
the level of datapoints and the targeted ontology models the BAS at the same level, no or little
additional semantic annotations will be required. On the other hand, if the ontology assigns
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datapoints to devices an information will be required as to define which datapoints should be
grouped together to model a device.

As a result of the REST paradigm which is a core concept in oBIX and the supported ref-
erence feature, it might be necessary to traverse the complete oBIX object tree in the course
of the transformation process in order to obtain all the required information. A specific WS
call might return only the relevant data to this specific resource whereas information about its
child objects might be provided as references. These child references have to be resolved by
separate WS calls.

5.1 Model Transformation

On the grounds of the provided arguments, a generic transformation concept as depicted in
Figure 4 is proposed. According to that, the transformation is performed in a three step process
which is described in the following:

1. Traverse and Combine - In this step, the oBIX server object tree is traversed via multiple
WS requests and the responses are combined into a complete oBIX document, which
provides a complete view on the oBIX representation of the BAS.

2. Annotate - This optional step allows to introduce semantic data annotations to the com-
plete oBIX document. This can be omitted if the oBIX server of interest is already provid-
ing the required information. The result of this step is a complete semantic oBIX docu-
ment. The semantic annotations should be attached to required resources via the oBIX
contract mechanism.

3. Transform - In a final step, an XSL transformation is performed resulting in the desired
OWL ontology. It is recommended to preserve oBIX URIs as unique identifiers for OWL
individuals during XSL transformation.

5.2 Data Synchronisation

The SILo implementation has to be designed in a way that the data that is provided at its
SPARQL interface is up-to-date in order to ensure an adequate and reliable access to the BAS.
It is assumed that the data available from the oBIX server represents a current state of the
underlying BAS. Therefore, the task of the synchronisation mechanism is to merge differences
between the data provided by the oBIX server and the data presented by the SPARQL interface
within a reasonable time frame.

If data values are changed at the SILo SPARQL interface, the internal representation, i.e., the
OWL ontology has to be updated. Additionally, the affected values at the oBIX server have to
be updated in a timely manner. A single SPARQL update might require several HTTP requests
to be transmitted.

One possibility to keep the OWL ontology up-to-date is to poll the data provided by the oBIX
server recurrently. However, this approach does not scale well as a possibly large number of
sensor and actuator values would produce a high network load even if the values have not
changed. Because of that, the utilization of the oBIX watch mechanism is proposed. This
approach still requires polling due to the fact that HTTP does not allow the server to contact the
client, but reduces the network load substantially as only updated data values are transmitted.
The oBIX Websocket binding [19] would obviate the usage of the watch service as it allows
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Figure 4: Transformation concept overview

the server to contact the client on demand. As soon as an updated value is provided by the
oBIX watch service, the internal representation needs to be updated accordingly. The polling
interval between successive pollChanges calls should be adjustable as to allow different control
scenarios to be realized.

6 Implementation

The prototype implementation of the SILo is intended as a proof of concept. The prototype
basically consists of two artefacts, an XSL document which allows to transform the oBIX model
to an OWL ontology and a Java based Semantic Web crawler. The ThinkHome [34] [35] Energy
and Resources ontology was chosen as target ontology as it allows to depict relevant parts of
a BAS precisely. Some additional concepts were introduced to the target ontology in order to
ease the implementation of the prototype. The knowledge base and the SPARQL interface of
the crawler are based on Apache Jena [36], a Java framework for the Semantic Web.

Within the prototype implementation, the NETx BMS Server from NETxAutomation acts a
gateway that is used to exchange data and information between the devices of the BAS. As
shown in Figure 5 the NETx BMS Server provides different interfaces to a various number
of systems and technologies. In addition to open standards like KNX, BACnet and Modbus,
application specific interfaces to proprietary systems (e.g. hotel management, access control
systems, ...) are supported too. Especially this diversity of available interfaces provides the
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opportunity to realize complex and enhanced uses cases which cannot be done using a single
technology. The datapoints as well as the available meta-data are represented within the NETx
BMS Server in a transparent view that is independent of the underlying technologies. Via the
newly developed oBIX interface, the Semantic Web crawler can access this view. In addition to
the standard oBIX services (e.g. read and write requests), oBIX watches for push notifications
are supported by the oBIX interface too.

   

oBIX interface     

 

Other 
technologies ...

Semantic Web Crawler

NETx BMS Server 
as SeWoA gateway

Proprietary systems
(hotel management, 

access control,  )

SILo     

Figure 5: NETx BMS Server as SeWoA gateway

The architecture of the Semantic Web crawler is depicted in Figure 6. The crawler traverses
the oBIX tree, resolves all found oBIX references and generates a complete oBIX document.
As the oBIX interface of the NETx BMS Server adheres to the KNX Web Services specification
which provides a model that is an extension of the ETS export model, it is possible to seman-
tically annotate the BAS directly in the ETS by assigning meaningful names to KNX groups.
Therefore, an additional enrichment of the data provided at the oBIX interface of the NETx
BMS Server is not required. Nevertheless, the crawler provides the means to annotate the
complete oBIX document with semantical meta-data to be used during transformation. The
resulting complete semantic oBIX document is eventually transformed to the desired ontology
by utilizing XSLT. The transformed ontology is stored inside the Apache Jena RDF triple store.

The crawler handles the data synchronisation between the oBIX interface and the internal
knowledge base during runtime. In order to allow a scalable implementation, the oBIX watch
service is utilized to register all devices of interest as well as their datapoints and to poll for
changes. Potential changes of data on the oBIX interface are merged into the RDF triple store.
In case of a SPARQL update, one or more REST calls are sent to the oBIX server in order to
perform the desired action.
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Figure 6: Semantic Web crawler architecture

7 Conclusion

The proposed SILo provides the possibility to dynamically map an arbitrary oBIX server rep-
resentation to an OWL ontology, which can be used as a common vocabulary for distributed
autonomous agents. This allows to increase the context-awareness of involved agents and
thus contributes to a more energy efficient control and operation of buildings. The presented
transformation process cannot fully be automated due to the flexibility of the oBIX standard, as
distinct oBIX implementations will require a customized transformation. However, the KNX Web
Services standard proposal allows to implement a reusable transformation for oBIX servers ad-
hering to this specification, like the NETx BMS Server. An engineering effort might still be
required due to a lack of semantical information.

Additional bindings for SILo like RDF/XML or Java besides the presented SPARQL bind-
ing would increase the interaction possibilities and ease further integration of devices. The
transaction management of SILo requires further investigation as this is seen as essential to a
distributed control mechanism. Security and safety aspects, as well as the error handling, also
deserve further examination.
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